
Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Privacy-Preserving Decentralized Micropayments
Onion Routing in Lightning

Olaoluwa Osuntokun
roasbeef

laolu@lightning.network

Lightning Labs

Scaling Bitcoin Milan, 2016

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

1 Intro to Onion Routing
Overview

2 Sphinx: A Compact and Provably Secure Mix Format
Overview
Lightning’s Sphinx Extensions
Performance Considerations

3 HORNET: High-speed Onion Routing at the Network Layer
Overview
Optimizations over Sphinx
In-Network Payment Negotiation

4 Forward Secrecy
Replay Protection
Key Rotation

5 Security Assumptions

6 Future Directions

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview

Overview - Onion Routing

Distributed set of Onion Routers (OR) [1]

Users create circuits with sub-set of nodes

Difficult for OR’s to gain more info than
predecessor+successor in path

Low Latency – usable within greater Internet

Notable success: Tor: 2nd Generation Onion Router [2]

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview

Domain Application - Lightning

Goals: privacy + censorship resistance

Each node in network doubles as an OR

Source routing: sender fully specifies route payments take:

Path length
Absolute time-locks (CLTV)
Fees at each hop
Inter-chain links

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Lightning’s Sphinx Extensions
Performance Considerations

Sphinx

Provably secure Mix Format [3]

Header: routing instructions
Body: end-to-end message

Sphinx header+body is re-obsfucated at each hop

Intermediate OR’s unable to distinguish one packet from
another (IND-CPA)

Entire packet remains fixed-sized through processing

Intermediate OR’s gain no positional informaiton

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Lightning’s Sphinx Extensions
Performance Considerations

Sphinx - Key Agreement

Sender needs to derive unique shared-secret for each hop

Used to encrypt+authenticate packet fields

To achieve unlink-ability, group-element for DH need to
change at each hop

Past solutions: include N group-elements within packet, one
for each hop

Sphinx’s solution: repeatedly blind (randomize) a single group
element

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Lightning’s Sphinx Extensions
Performance Considerations

This One Little Trick Drives Adversaries Insane!

Source derives unique session key: x
Source obtains list of OR pubkeys: {N1,N2,N3,Ni}
Source computes the per-hop group element:

a0 = g x s0 = Nx
1 b0 = h(a0, s0)

a1 = g xb0 s1 = Nxb0
2 b1 = h(a1, s1)

a2 = g xb
b1
0 s2 = Nxb

b1
0

2 b2 = h(a2, s2)

...

Each hop re-blinds (bi) the group-element for their successor based
on the random group-element (ai) and shared secret (si)!

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Lightning’s Sphinx Extensions
Performance Considerations

Packet Processing

ProcessSphinxPacket (packet)

a, header ,MAC , body ← packet

s ← ax ?

ˆMAC = MAC (s, header ||body)

if ˆMAC ! = MAC

REJECT

endif

â← ah(s,a) ?

nextHop, ˆpacket = parse(s, header , body)

return nextHop, ˆpacket

? indicates an asymmetric
cryptographic operation

parse shifts the bytes, and
decrypts a layer from
header+body

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Lightning’s Sphinx Extensions
Performance Considerations

Sphinx Modifications

Onion Routing spec draft, led by Christian Decker [4]

Addition of version-byte to
header

Packet now contains a
per-hop payload

Entire packet protected
under MAC

Switch from AES-SHA256
to ChaCha20-Poly1305

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Lightning’s Sphinx Extensions
Performance Considerations

Performance Considerations

Two asymmetric crypto operations now in critical-path for
forwarding:

1 DH operation to derive shared-secret

2 Exponentiation/Scalar-Multiplication to re-blind
group-element

OR’s need to maintain per-session circuit state

Circuit: payment hash, incoming link, outgoing link

Needs to be persisted to disk to survive restarts

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Optimizations over Sphinx
In-Network Payment Negotiation

Overview

Progression of Onion Routing to achieve efficient
internet-scale data forwarding [5]

Eliminates asymmetric crypto operations during
data-forwarding

Creates a bi-directional ephemeral circuit during set up

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Optimizations over Sphinx
In-Network Payment Negotiation

HORNET’s Optimizations

Constructs an Onion Circuit with
a double-pass:

Sphinx used for session
initialization

Intermediates OR’s populate
a Forwarding Segment

Allows for forward secrecy
within set-up phase

HORNET Session Setup Packet

hopstype

HORNET Data Packet

hopstype

Sphinx Header

Sphinx Payload

FS Payload

AHDR

Data Payload

nonceEXP

Figure 1: HORNET packet formats.

generator of G.
Let r be the maximum length of a path, i.e., the maximum num-

ber of nodes on a path, including the destination. We denote the
length of an FS as lFS and the size of an AHDR block, containing
an FS and a MAC of size k, as c = lFS +k.
HORNET uses the following cryptographic primitives:

• MAC : {0,1}k×{0,1}∗ → {0,1}k : Message Authentication Code
(MAC) function.

• PRG0,PRG1 : {0,1}k→ {0,1}r(c+k); PRG2 : {0,1}k→ {0,1}rc :
Three cryptographic pseudo-random generators.

• PRP : {0,1}k ×{0,1}a → {0,1}a : A pseudo-random permuta-
tion, implementable as a block cipher. The value of a will be
clear from the context.

• ENC : {0,1}k × {0,1}k × {0,1}mk → {0,1}mk : Encryption
function, with the second parameter being the Initialization Vec-
tor (IV) (e.g., Stream cipher in counter mode). m is a variable
integer parameter.

• DEC : {0,1}k × {0,1}k × {0,1}mk → {0,1}mk : Decryption
function to reverse ENC.

• hop : G∗ → {0,1}k : a family of hash functions used to key op,
with op ∈ {MAC,PRG0,PRG1,PRP,ENC,DEC}.

We denote by RAND(l) a function that generates a new uniformly
random string of length l.
Furthermore, we define the notation for bit strings. 0l stands for

a string of zeros of length l. |x| is the length of the bit string x.
x[a...b] represents a substring of x from bit a to bit b, with sub-
index a starting from 0; x[a...end] indicates the substring of x from
bit s till the end. ε is the empty string. x∥y is the concatenation of
string x and string y.
In the following protocol description, we consider a source S

communicating with a destinationD using forward path pf travers-
ing nf

0 ,nf
1 , . . . ,nf

lf−1 and backward path pb traversing nb
0,n

b
1, . . . ,n

b
lb−1,

with lf , lb ≤ r, where nf
0 and nb

lb−1 are the nodes closest to the
source. Without loss of generality, we let the last node on the for-
ward path nf

lf−1 = D and refer to the destination by these two
notations interchangeably. In general we use dir ∈ {f,b} as super-
scripts to distinguish between notation referring to the forward and
backward path, respectively. Finally, to avoid redundancy, we use
{symdir

i } to denote {symdir
i |0 ≤ i ≤ ldir − 1}, where sym can

be any symbol.

4.2 Initialization
Suppose that a source S wishes to establish an anonymous ses-

sion with a public destination D. First, S anonymously obtains
(from the underlying network) paths in both directions: a forward
path pf = {Rf

0 ,Rf
1 , · · · ,Rf

lf−1} and a backward path pb = {Rb
0,R

b
1, · · · ,Rf

lb−1}.

Rdir
i denotes the routing information needed by the node ndir

i to
forward a packet. S also anonymously retrieves and verifies a set of
public keys g

x
ndir

i for the node ndir
i on path pdir (see Section 2.1).

Note that gxD is also included in the above set (as nf
lf−1 = D).

Finally, S generates a random DH key pair for the session: xS
and gxS . The per-session public key gxS is used by the source to
create shared symmetric keys with nodes on the paths later in the
setup phase. S locally stores

{
(xS ,gxS) ,

{
g

x
ndir

i

}
,pdir

}
, and

uses these values for the setup phase.

4.3 Setup Phase
As discussed in Section 3, in the setup phase, HORNET uses

two Sphinx packets, which we denote by P➊ and P➋, to traverse
all nodes on both forward and backward paths and establish per-
session state with every intermediate node, without revealing S’s
network location. For S to collect the generated per-session state
from each node, both Sphinx packets contain an empty FS payload
into which each intermediate node can insert its FS, but is not able
to learn anything about, or modify, previously inserted FSes.

4.3.1 Sphinx Overview
Sphinx [21] is a provably-secure onion routing protocol. Each

Sphinx packet allows a source node to establish a set of symmet-
ric keys, one for each node on the path through which packets are
routed. These keys enable each node to check the header’s in-
tegrity, onion-decrypt the data payload, and retrieve the informa-
tion to route the packet. Processing Sphinx packets involves ex-
pensive asymmetric cryptographic operations, thus Sphinx alone is
not suitable to support high speed anonymous communication.
Sphinx Packets. A Sphinx packet is composed of a Sphinx header
SHDR and a Sphinx payload SP. The SHDR contains a group ele-
ment yi

dir that is re-randomized at each hop. Each yi
dir is used

as S’s ephemeral public key in a DH key exchange with node ndir
i .

From this DH exchange node ndir
i derives a shared symmetric key

sndir
i
, which it uses to process the rest of the SHDR and mutate

the yi
dir . The rest of the SHDR is an onion-encrypted data struc-

ture, with each layer containing the routing information to decide
the next node to forward the packet and a per-hop MAC to pro-
tect the header’s integrity. The Sphinx payload SP allows end hosts
to send confidential content to each other. Each intermediate node
processes SP by using a pseudo-random permutation.
Sphinx Core Functions. We abstract the Sphinx protocol into the
following six functions:
• GEN_SPHX_HDR. The source nodes uses this function to gen-
erate two Sphinx headers, SHDRf and SHDRb, for the forward
and backward path, respectively. It also outputs a series of DH
public-private key pairs

{(
xi

dir,yi
dir

)}
(ephemeral keys of the

source), and the symmetric keys {sndir
i

}, each established with
the corresponding node’s public key g

x
ndir

i .
• GEN_SPHX_PL_SEND. The function allows the source to gener-
ate an onion-encrypted payload SPf encapsulating confidential
data to send to the destination.

• UNWRAP_SPHX_PL_SEND. The function removes the last en-
cryption layer added by GEN_SPHX_PL_SEND, and allows the
destination to decrypt the SPf .

• GEN_SPHX_PL_RECV. The function enables the destination to
cryptographically wrap a data payload into SPb before sending it
to the source.

• UNWRAP_SPHX_PL_RECV. The function allows the source to
recover the plaintext of the payload that the destination sent.

4

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Optimizations over Sphinx
In-Network Payment Negotiation

HORNET’s Optimizations

Circuit state pushed to the
endpoints:

HORNET packets carry
information complete
necessary for forwarding

Node state reduced to SV
symmetric key (O(1)
storage)

Solely symmetric
cryptography used for data
forwarding

protocol (using PROC_SPHX_PKT). As a result nf
i obtains the

processed header and payload (SHDRf ′,SP′) as well as the rout-
ing information Rf

i , S’s DH public key yf
i , and the established

symmetric key s
nf

i
shared with S. During this processing the

integrity of the CHDR is verified.
2. nf

i obtains EXP from CHDR and checks that EXP is not expired.
nf

i also verifies that R
f
i is valid.

3. To provide forward secrecy, the shared key s
nf

i
is not used for

the data transmission phase, since s
nf

i
depends on nf

i ’s long-

term DH key. Instead, nf
i generates an ephemeral DH key pair

(x′
nf

i

,y′
nf

i

) and derives sf
i by

sf
i = (yf

i)
x′

n
f
i (5)

This is the symmetric key that is included in nf
i ’s FS and used

during the data transmission phase.
4. nf

i generates its FS FSf
i by using its local symmetric key SVi

to encrypt sf
i , R

f
i , and EXP:

FSf
i = FS_CREATE(SVi,{sf

i ∥R
f
i ∥ EXP}) (6)

5. nf
i adds its FSf

i and MD = y′
nf

i

into the FS payload PFS .

PFS
′ = ADD_FS(s

nf
i
,FSf

i ,y′
nf

i

,PFS) (7)

Adding y′
nf

i

as the meta-data into the FS payload allows S to

later retrieve y′
nf

i

and derive the symmetric key sf
i shared with

nf
i for the session. The MAC computed using s

nf
i
shared be-

tween S and nf
i (Line 5 in Algorithm 1) allows S to authenticate

the DH public key y′
nf

i

.

6. Finally node nf
i assembles the processed packet P➊= {CHDR∥

SHDRf ′ ∥ SP′ ∥PFS
′} and routes it to the next node according

to the routing information Rf
i .

Destination Processing. As the last node on the forward path, D
processes P➊ in the same way as the previous nodes: it processes
the Sphinx packet in P➊ and derives a symmetric key sD shared
with S; it generates a new DH key pair (x′D,y′D) and derives a
second shared key s′D; it encrypts per-session state including s′D
into FSD and inserts FSD into the FS payload.
After these operations, however, D moves on to create the sec-

ond setup P➋ as follows:
1. D retrieves the Sphinx reply header using the symmetric key

sD:
SHDRb = UNWRAP_SPHX_PL_SEND(sD,SP) (8)

2. D places the FS payload PFS of P➊ into the Sphinx payload
SPb of P➋ (this will allow S to get the FSes {FSf

i }):
SPb = GEN_SPHX_PL_RECV(sD,PFS) (9)

Note that sinceD has no knowledge about the keys {sf
i } except

for sD ,D learns nothing about the other FSes in the FS payload.
3. D creates a new FS payload PFS

b = INIT_FS_PAYLOAD(sD)
to collect the FSes along the backward path.

4. D composes P➋ = {CHDR ∥ SHDRb ∥ SPb ∥PFS
b} and sends it

to the first node on the backward path, nb
0.

The nodes on the backward path process P➋ in the exact same
way nodes on the forward path processed P➊. Finally P➋ reaches
the source S with FSes {FS b

i} added to the FS payload.
Post-setup Processing. Once S receives P➋ it extracts all FSes,
i.e., {FSf

i } and {FS b
i}, as follows:

1. S recovers the FS payload for the forward path PFS
f from SPb:

PFS
f = UNWRAP_SPHX_PL_RECV({sb

i},SPb) (10)
2. S retrieves the FSes for the nodes on the forward path {FS f

i }:
{FS f

i } = RETRIEVE_FSES({sf
i },PFS

f) (11)
3. S directly extracts from PFS

bthe FSes for the nodes on the
backward path {FS b

i}:
{FS b

i} = RETRIEVE_FSES({sb
i},PFS

b) (12)
With the FSes for all nodes on both paths,

{
FSf

i

}
and

{
FS b

i

}
,

S is ready to start the data transmission phase.

4.4 Data Transmission Phase
Each HORNET data packet contains an anonymous header AHDR

and an onion-encrypted payload O as shown in Figure 1. Figure 2
demonstrates the details of an AHDR. The AHDR allows each inter-
mediate node along the path to retrieve its per-session state in the
form of an FS and process the onion-encrypted data payload. All
processing of data packets in HORNET only involves symmetric-
key cryptography, therefore supporting fast packet processing.

RS

0 8

Shared Key

16

EXP

Forwarding Segment (FS)
0

FS

Anonymous Header

48*hops

Blinded FSes

Onion Encrypted

MAC
48

32

Encrypted

Figure 2: Format of a HORNET anonymous header with de-
tails of a forwarding segment (FS).

At the beginning of the data transmission phase, S creates two
AHDRs, one for the forward path (AHDRf) and one for the back-
ward path (AHDRb), by using FSes collected during the setup phase.
AHDRf enables S to send data payloads toD. To enableD to trans-
mit data payloads back, S sends AHDRb as payload in the first data
packet. If this packet is lost, the source would notice from the fact
that no reply is seen from the destination. If this happens the source
simply resends the backward AHDR using a new data packet.

4.4.1 Anonymous Header
Like an FS payload, an AHDR is an onion-encrypted data struc-

ture that contains FSes. It also offers similar guarantees, i.e., se-
crecy and integrity, for the individual FSes it contains, for their
number and for their order. Its functionalities, on the other hand,
are the inverse: while the FS payload allows the source to collect
the FSes added by intermediate nodes, the AHDR enables the source
to re-distribute the FSes back to the nodes for each transmitted data
packet.
Functions. The life cycle of AHDRs involves two functions: GET_FS
and CREATE_AHDR. GET_FS allows each intermediate node to re-
trieve its FS from the input AHDR and compute the AHDR for the
next hop (see Algorithm 3). CREATE_AHDR enables S to create
two AHDRs, AHDRf and AHDRb (see Algorithm 4).

4.4.2 Onion Payload
HORNET data payloads are protected by onion encryption. To

send a data payload to the destination, the source adds a sequence
of encryption layers on top of the data payload, one for each node
on the forward path (including the destination). As the packet is
forwarded, each node removes one layer of encryption, until the
destination removes the last layer and obtains the original plaintext.

6

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Optimizations over Sphinx
In-Network Payment Negotiation

In-Network Payment Negotiation

Currently, payment negotiation assumed to be out-of-band:

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Overview
Optimizations over Sphinx
In-Network Payment Negotiation

In-Network Payment Negotiation

With HORNET, payment
negotiation can be done purely
over the network

Reduces payment info to
simply: < nodePubKey >

Ideal for the streaming
payment setting!

Additional payment hashes
exchanged over HORNET
circuit

Streamlines possible network
layer payment fragmentation

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Replay Protection
Key Rotation

Shared Secret Log

Without replay protection, packets can be re-injected into the
network, possibly leaking route information.

Solution: remember all past shared secrets, rejecting
”double-spends”.

Problem: log of shared secrets grows unbounded

If we periodically rotate keys, can garbage collect prior log entries!

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Replay Protection
Key Rotation

Active Key Rotation

Use the network communication layer (irc, broadcast, etc) to
advertise new keys

Key advertisements authenticated via current identity key

Advertise staggered overlapping windows to allow loosely
synchronized rotation

Active rotation incurs additional bandwidth overhead, can we
eliminate this?

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Replay Protection
Key Rotation

Passive Key Rotation - First Attempt

Using BIP 32 Public Derivation, the edges can rotate passively

Initially communicate:

Master Public Key (MPK)
Anchor: < blockhash >

Edges then passively rotate keys (eg, every 144 blocks from
anchor)

However, compromise of child priv key, and MPK defeats forward
secrecy!

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Replay Protection
Key Rotation

Passive Key Rotation - Second Pass

Using pairing cryptography, we can achieve non-interactive passive
key rotation![6]

We modify the Boneh-Franklin Identity Based Encryption
(BF-IBE)[7] scheme to our domain:

Three cyclic groups: G, Ĝ, GT for prime order q.

A bilinear pairing: e : G× Ĝ→ GT : e(ga, ĝb) = e(g , ĝ)ab

Each node generates a master secret: s, and advertises y = g s

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Replay Protection
Key Rotation

Passive Key Rotation - Second Pass

Given H a full-domain hash function: H : {0, 1}∗ → Ĝ?

Rotation:

Assuming a BF-IBE setting: ID = H(blockHash)

Each nodes is it’s own Private Key Generator (PKG)

PKG extraction: n = IDs = H(blockHash)s

Key agreement:

Given Sphinx pseudonym: R = g r (recall our ”little trick”)

Source derives secret: e(y , ID)r , node derives secret: e(R, n)

e(y , ID)r = e(g s ,Hid)r = e(R, n) = e(g r ,Hid
s) = e(g ,Hid)rs

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Limitations

In practice, security relies on high-degree of path diversity

Additional correlation possible via payment values, link
capacities, etc.

Active network analysis via timing attacks, packet sizes, etc.

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

Future Directions

Integrate HORNET

Sphinx (a prerequisite) currently implemented in lnd and
lightningd

Per-hop payload structure: inter-chain, timeouts, amounts,
etc.

Investigation into alternative higher-latency systems: mix-net,
DC-net, etc.

Non-source-routed privacy schemes

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

[Goldschlag et al., 1997] D. M. Goldschlag, M. Reed, and P.
Syverson
Hiding Routing Information, 1997.

[The Tor Project, 2016]
https://www.torproject.org, 2016.

[Sphinx: A Compact and Provably Secure Mix Format, 2009]
G. Danezis and I. Goldberg
IEEE Symposium on Security and Privacy, 2009.

https://github.com/cdecker/lightning-
rfc/blob/master/bolts/onion-protocol.md

[HORNET: High-speed Onion Routing at the Network Layer,
2015] Chen Chen et al.
ACM CCS, 2015.

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

Intro to Onion Routing
Sphinx: A Compact and Provably Secure Mix Format

HORNET: High-speed Onion Routing at the Network Layer
Forward Secrecy

Security Assumptions
Future Directions

[Pairing-Based Onion Routing, 2007] A. Kate, G. M.
Zaverucha, and I. Goldberg
PETS ’07, 2007.

[Identity-Based Encryption from the Weil Pairing, 2001] D.
Boneh and M. Franklin
Advances in Cryptology - CRYPTO’01, 2001.

B2BE 1EFA 68C1 ADA4 7BB9 4C59 6505 9E25 AA74 8703 Onion Routing in Lightning – roasbeef

	Intro to Onion Routing
	Overview

	Sphinx: A Compact and Provably Secure Mix Format
	Overview
	Lightning's Sphinx Extensions
	Performance Considerations

	HORNET: High-speed Onion Routing at the Network Layer
	Overview
	Optimizations over Sphinx
	In-Network Payment Negotiation

	Forward Secrecy
	Replay Protection
	Key Rotation

	Security Assumptions
	Future Directions

